Poster of the 12th European Fluid Mechanics Conference at TU Wien in 2018. The motif is based on the smoke image shown here.

Throughout my professional career as a scientist and teacher, I have authored numerous journal articles and books, all centered around fluid mechanics. Amidst the myriad topics within this scientific domain, my primary focus has been on comprehending the emergence of periodic flow patterns from initially simple and symmetric laminar flows. As the strength of the flow increases, the fluid motion undergoes changes, and the symmetry of the basic flow is diminished. Frequently, though not invariably, one can observe a sequence of flow patterns whose symmetry is progressively reduced until the motion transitions into a chaotic or turbulent state.

An everyday example is the evolution of the trailing vortices produced by large aircraft, which become visible through the condensation of water vapor. On a clear day, one can observe how these vortices evolve after being left behind by the aircraft. Another example, shown on the left, is the hot plume rising from a point source (visualized by the smoke from an incense stick) which first becomes slightly wavy, then developes large periodic flow structures and finally dissolves in a turbulent manner.

Open Researcher & Contributor ID (ORCID):
0000-0003-1783-3255

Books

  • H. C. Kuhlmann, Strömungsmechanik, Pearson Studium, München (2007), in German. PDF Logo [Corrigendum]
  • H. C. Kuhlmann, Thermocapillary convection in models of crystal growth, Springer Tracts in Modern Physics, vol. 152, Springer, Berlin, Heidelberg (1999). PDF Logo [Corrigendum]
  • H. C. Kuhlmann and H. J. Rath (eds.), Free surface flows, CISM Courses and Lectures, vol. 391, International Centre for Mechanical Sciences, Springer, Wien, New York (1998).

Book Chapter

  • H. C. Kuhlmann and F. Romanò, The lid-driven cavity, in Computational Modeling of Bifurcations and Instabilities in Fluid Dynamics, A. Gelfgat (ed.), Series: Computational Methods in Applied Sciences, vol. 50, pp. 233-309, Springer (2018), Preprint. PDF Logo [Download 25MB]

Publications in Scientific Journals

  • P.-E. des Boscs and H. C. Kuhlmann, Flow stability and sequence of bifurcations in a cubic cavity driven by a constant shear stress, J. Fluid Mech. 978, A28 (2024). PDF Logo (open access)
  • M. Stojanović á &bacute; ć &dacute; é &facute; &hacute; &hacute; í , F. Romanò and H. C. Kuhlmann, High-Prandtl-number thermocapillary liquid bridges with dynamically deformed interface: Effect of an axial gas flow on the linear stability, J. Fluid Mech. 978, A27 (2024). PDF Logo (open access)
  • M. Stojanović, F. Romanò and H. C. Kuhlmann, Flow instability in high-Prandtl-number liquid bridges with fully temperature-dependent thermo-physical properties, J. Fluid Mech. 978, A17 ( 2024). PDF Logo (open access)
  • M. Stojanović, F. Romanò and H. C. Kuhlmann, Instability of axisymmetric flow in thermocapillary liquid bridges: Kinetic and thermal energy budgets for two-phase flow with temperature-dependent material properties, Eur. J. Applied Math. 35, 267-293 (2024). PDF Logo (open access)
  • L. Babor and H. C. Kuhlmann, Linear stability of thermocapillary flow in a droplet attached to a hot or cold substrate, Phys. Rev. Fluids 8, 114003 (2023). PDF Logo
  • M. Stojanović, F. Romanò and H. C. Kuhlmann, MaranStable: A linear stability solver for multiphase flows in canonical geometries, Software X 23, 101405 (2023). PDF Logo (open access)
  • L. Babor and H. C. Kuhlmann, Lagrangian transport in the time-periodic two-dimensional lid-driven square cavity, Phys. Fluids 35, 033611 (2023). PDF Logo (open access)
  • H. Wu, F. Romanò and H. C. Kuhlmann, Attractors for the motion of a finite-size particle in a cuboidal lid-driven cavity, J. Fluid Mech. 955, A16 (2023). PDF Logo (open access)
  • M. Stojanović, F. Romanò and H. C. Kuhlmann, Stability of thermocapillary flow in liquid bridges fully coupled to the gas phase, J. Fluid Mech. 949, A5 (2022). PDF Logo (open access)
  • P.-E. des Boscs and H. C. Kuhlmann, Stability of obliquely driven cavity flow, J. Fluid Mech. 928, A25 (2021). PDF Logo (open access)
  • F. Romanò, P.-E. des Boscs and H. C. Kuhlmann, Stokesian motion of a spherical particle near a right corner made by tangentially moving walls, J. Fluid Mech. 927, A41 (2021). PDF Logo (open access)
  • I. Barmak, F. Romanò and H. C. Kuhlmann, Finite-size coherent particle structures in high-Prandtl-number liquid bridges, Phys. Rev. Fluids 6, 084301 (2021). PDF Logo
  • H. Wu, F. Romanò and H. C. Kuhlmann, Attractors for the motion of a finite-size particle in a two-sided lid-driven cavity, J. Fluid Mech. 906, A4 (2021). PDF Logo (open access)
  • F. Romanò, T. Türkbay and H. C. Kuhlmann, Lagrangian chaos in steady three-dimensional lid-driven cavity flow, Chaos 30, 073121 (2020). PDF Logo
  • F. Romanò, P.-E. des Boscs and H. C. Kuhlmann, Forces and torques on a sphere moving near a dihedral corner in creeping flow, Eur. J. Mech. B/Fluids 84, 110-121 (2020). PDF Logo
  • F. Romanò and H. C. Kuhlmann, Finite-size coherent structures in thermocapillary liquid bridges: A review, Int. J. Microgravity Sci. Appl. 36, 360201 (2019). PDF Logo (open access)
  • F. Romanò, P. Kunchi Kannan and H. C. Kuhlmann, Finite-size Lagrangian coherent structures in a two-sided lid-driven cavity, Phys. Rev. Fluids 4, 024302 (2019). PDF Logo
  • F. Romanò, H. Wu and H. C. Kuhlmann, A generic mechanism for finite-size coherent particle structures, Int. J. Multiphase Flow 111, 42-52 (2019). PDF Logo
  • F. Romanò and H. C. Kuhlmann, Finite-size Lagrangian coherent structures in thermocapillary liquid bridges, Phys. Rev. Fluids 3, 094302 (2018). PDF Logo
  • C. Kuehn, F. Romanò and H. C. Kuhlmann, Tracking particles in flows near invariant manifolds via balance functions, Nonlinear Dyn. 92, 983-1000 (2018). PDF Logo , (Sharing link)
  • F. Romanò, H. C. Kuhlmann, M. Ishimura and I. Ueno, Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges, Phys. Fluids 29, 093303 (2017). PDF Logo
  • S. Masoudi and H. C. Kuhlmann, Axisymmetric buoyant-thermocapillary flow in sessile and hanging droplets, J. Fluid Mech. 826, 1066-1095 (2017). PDF Logo
  • F. Romanò, S. Albensoeder and H. C. Kuhlmann, Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity, J. Fluid Mech. 826, 302-334 (2017). PDF Logo
  • F. Romanò, A. Hajisharifi and H. C. Kuhlmann, Cellular flow in a partially filled rotating drum: regular and chaotic advection, J. Fluid Mech. 825, 631-650 (2017). PDF Logo
  • F. Romanò and H. C. Kuhlmann, Particle-boundary interaction in a shear-driven cavity flow, Theor. Comput. Fluid Dyn. 31, 427-445 (2017). PDF Logo (open access)
  • J. Emhofer, B. Beladi, P. Dudzinski, T. Fleckl and H. C. Kuhlmann, Analysis of a cross-flow liquid-desiccant falling-film, Appl. Thermal Engng 124, 91-102 (2017). PDF Logo
  • F. Romanò and H. C. Kuhlmann, Smoothed-profile method for momentum and heat transfer in particulate flows, Int. J. Num. Meth. Fluids 83, 485-512 (2017). PDF Logo
  • F. Romanò and H. C. Kuhlmann, Numerical investigation of the interaction of a finite-size particle with a tangentially moving boundary, Int. J. Heat Fluid Flow 64, Part A, 75-82 (2016). PDF Logo
  • F. H. Muldoon and H. C. Kuhlmann, Origin of particle accumulation structures in liquid bridges: particle-boundary interactions versus inertia, Phys. Fluids 28, 073305 (2016). PDF Logo
  • F. H. Muldoon and H. C. Kuhlmann, Objective function choice for control of a thermocapillary flow using an adjoint-based control strategy, Int. J. Heat Fluid Flow 56, 28-42 (2015). PDF Logo
  • J. Kühnen, P. Braunshier, M. Schwegel, H. C. Kuhlmann and B. Hof, Subcritical versus supercritical transition to turbulence in curved pipes, J. Fluid Mech. 770, R3 (2015). PDF Logo
  • H. C. Kuhlmann and T. Lemée, Particle-depletion dynamics in axisymmetric thermocapillary flows, Eur. Phys. J. Special Topics 224, 309-318 (2015). PDF Logo
  • H. C. Kuhlmann, Large-scale liquid motion in free thermocapillary films, Microgravity Sci. Technol. 26, 397-400 (2014). PDF Logo
  • H. C. Kuhlmann, R. V. Mukin, T. Sano and I. Ueno, Structure and dynamics of particle-accumulation in thermocapillary liquid bridges, Fluid Dynamics Res. 46, 041421 (2014). PDF Logo
  • H. C. Kuhlmann and S. Albensoeder, Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics, Phys. Fluids 26, 024104 (2014). PDF Logo
  • J. Kühnen, J. Holzner, B. Hof and H. C. Kuhlmann, Experimental investigation of transitional flow in a toroidal pipe, J. Fluid Mech. 738, 463-491 (2014). PDF Logo
  • F. H. Muldoon and H. C. Kuhlmann, Different particle-accumulation structures arising from particle-boundary interactions in a liquid bridge, Int. J. Multiphase Flow 59, 145-159 (2014). PDF Logo
  • R. V. Mukin and H. C. Kuhlmann, Topology of hydrothermal waves in liquid bridges and dissipative structures of transported particles, Phys. Rev. E 88, 053016 (2013). PDF Logo
  • F. H. Muldoon and H. C. Kuhlmann, Numerical error in modeling of particle-accumulation structures in periodic free-surface flows, Comput. Fluids 88, 43-50 (2013). PDF Logo
  • T. Siegmann-Hegerfeld, S. Albensoeder and H. C. Kuhlmann, Three-dimensional flow in a lid-driven cavity with width-to-height ratio of 1.6, Experiments in Fluids 54, 1526 (2013). PDF Logo
  • F. H. Muldoon and H. C. Kuhlmann, Coherent particulate structures by boundary interaction of small particles in confined periodic flows, Physica D 253, 40-65 (2013). PDF Logo
  • C. Klopsch, H. C. Kuhlmann and F. G. Barth, Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour, J. R. Soc. Interface 10, 20120820-1-20120820-11 (2013). PDF Logo
  • C. Klopsch, H. C. Kuhlmann and F. G. Barth, Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly, J. R. Soc. Interface 9, 2591-2602 (2012). PDF Logo
  • E. Hofmann and H. C. Kuhlmann, On the optimum mass transfer of flat absorbing falling films, Int. J. Heat Mass Transfer 55, 7686-7697 (2012). PDF Logo
  • D. Lanzerstorfer and H. C. Kuhlmann, Global stability of multiple solutions in plane sudden-expansion flow, J. Fluid Mech. 702, 378-402 (2012). PDF Logo
  • H. C. Kuhlmann and F. H. Muldoon, Particle-accumulation structures in periodic free-surface flows: Inertia versus surface collisions, Phys. Rev. E 85, 046310 (2012). PDF Logo
  • M. Ahmed and H. C. Kuhlmann, Flow instability in triangular lid-driven cavities with wall motion away from a rectangular corner, Fluid Dynamics Res. 44, 025501 (2012). PDF Logo
  • D. Lanzerstorfer and H. C. Kuhlmann, Three-dimensional instability of the flow over a forward-facing step, J. Fluid Mech. 695, 390-404 (2012). PDF Logo
  • D. Lanzerstorfer and H. C. Kuhlmann, Global stability of the two-dimensional flow over a backward-facing step, J. Fluid Mech. 693, 1-27 (2012). PDF Logo
  • E. Hofmann and H. C. Kuhlmann, Particle accumulation on periodic orbits by repeated free surface collisions, Phys. Fluids 23, 0721106 (2011). PDF Logo
  • L. M. Gonzalez, M. Ahmed, J. Kühnen, H. C. Kuhlmann and V. Theofilis, Three-dimensional flow instability in a lid-driven isosceles triangular cavity, J. Fluid Mech. 675, 369-396 (2011). PDF Logo
  • H. C. Kuhlmann and U. Schoisswohl, Flow instabilities in thermocapillary-buoyant liquid pools, J. Fluid Mech. 644, 509-535 (2010). PDF Logo
  • T. Siegmann-Hegerfeld, S. Albenoseder and H. C. Kuhlmann, Two- and three-dimensional flows in nearly rectangular cavities driven by collinear motion of two facing walls, Exp. Fluids 45, 781-796 (2008). PDF Logo
  • H. C. Kuhlmann and S. Albensoeder, Three-dimensional flow instabilities in a thermocapillary-driven cavity, Phys. Rev E 77, 036303 (2008). PDF Logo
  • S. Shiratori, H. C. Kuhlmann and T. Hibiya, Linear stability of thermocapillary flow in partially confined half-zones, Phys. Fluids 19, 044103 (2007). PDF Logo
  • S. Shiratori, H. C. Kuhlmann, and T. Hibiya, Oscillatory transition of axisymmetric flow in partially confined thermo-capillary liquid bridges of low-Pr fluids: Effect of centrifugal and elliptic instability mechanisms, J. Jap. Soc. Microgravity Appl. 23, 233-243 (2006) (in Japanese). PDF Logo
  • S. Albensoeder and H. C. Kuhlmann, Nonlinear three-dimensional flow in the lid-driven square cavity, J. Fluid Mech. 569, 465-480 (2006). PDF Logo
  • S. Shiratori, T. Hibiya and H. C. Kuhlmann, Effect of centrifugal forces on the instability of the thermocapillary flow in partially confined half-zones, Microgravity Sci. Technol. 18, 132-136 (2006). PDF Logo
  • S. Domesi, Particle motion in the axisymmetric toroidal flow in thermocapillary liquid bridges: towards understanding PAS, Microgravity Sci. Technol. 18, 137-140 (2006). PDF Logo
  • S. Albensoeder and H. C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow, J. Comp. Phys. 206, 536-558 (2005). PDF Logo
  • H. C. Kuhlmann and S. Albensoeder, Strained vortices in driven cavities, Z. Angew. Math. Mech. 85, 387-399 (2005). PDF Logo
  • S. Albensoeder and H. C. Kuhlmann, Stability balloon for the double-lid-driven cavity flow, Phys. Fluids 15, 2453-2456 (2003). PDF Logo
  • Ch. Nienhüser and H. C. Kuhlmann, Stability of thermocapillary flows in non-cylindrical liquid bridges (Corrigendum), J. Fluid Mech. 480, 333-334 (2003). PDF Logo
  • H. C. Kuhlmann and Ch. Nienhüser, Dynamic free-surface deformations in thermocapillary liquid bridges, Fluid Dyn. Res. 31, 103-127 (2002). PDF Logo
  • S. Albensoeder and H. C. Kuhlmann, Three-dimensional instability of two counter-rotating vortices in a rectangular cavity driven by parallel wall motion, Eur. J. Mech. B/Fluids 21, 307-316 (2002). PDF Logo
  • S. Albensoeder and H. C. Kuhlmann, Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls, J. Fluid Mech. 458, 153-180 (2002). PDF Logo
  • Ch. Nienhüser and H. C. Kuhlmann, Stability of thermocapillary flows in non-cylindrical liquid bridges, J. Fluid Mech. 458, 35-73 (2002). PDF Logo
  • C. Blohm and H. C. Kuhlmann, The two-sided lid-driven cavity: Experiments on stationary and time-dependent flows, J. Fluid Mech. 450, 67-95 (2002). PDF Logo
  • S. Albensoeder, H. C. Kuhlmann and H. J. Rath, Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities, Theor. Comp. Fluid Dyn. 14, 223-241 (2001). PDF Logo
  • S. Albensoeder, H. C. Kuhlmann and H. J. Rath, Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem, Phys. Fluids 13, 121-135 (2001). PDF Logo
  • J. Leypoldt, H. C. Kuhlmann, and H. J. Rath, Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges, J. Fluid Mech. 414, 285-314 (2000). PDF Logo
  • H. C. Kuhlmann, Ch. Nienhüser and H. J. Rath, The local flow in a wedge between a rigid wall and a surface of constant shear stress, J. Eng. Math. 36, 207-218 (1999). PDF Logo
  • M. Prange, M. Wanschura, H. C. Kuhlmann and H. J. Rath, Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic fields, J. Fluid Mech. 394, 281-302 (1999). PDF Logo
  • Zh. Kozhoukharova, H. C. Kuhlmann, M. Wanschura and H. J. Rath, On the influence of a variable viscosity on the onset of hydrothermal waves in thermocapillary liquid bridges, Z. Angew. Math. Mech. 79, 535-543 (1999). PDF Logo
  • H. C. Kuhlmann, M. Wanschura and H. J. Rath, Elliptic instability in two-sided lid-driven cavity flow, Eur. J. Mech. B/Fluids 17, 561-569 (1998). PDF Logo
  • M. Wanschura, H. C. Kuhlmann and H. J. Rath, Linear stability of two-dimensional combined buoyant-thermocapillary flow in cylindrical liquid bridges, Phys.Rev. E 55, 7036-7042 (1997). PDF Logo
  • H. C. Kuhlmann, M. Wanschura and H. J. Rath, Flow in two-sided lid-driven cavities: Non-uniqueness, instabilities and cellular structures, J. Fluid Mech. 336, 267-299 (1997). PDF Logo
  • M. Wanschura, H. C. Kuhlmann and H. J. Rath, Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below, J. Fluid Mech. 326, 399-415 (1996). PDF Logo
  • V. Saß, H. C. Kuhlmann and H. J. Rath, Investigation of 3D thermocapillary convection in a cubic container by a Multi-grid method, Int. J. Heat Mass Transfer 39, 603-613 (1995). PDF Logo
  • M. Wanschura, V. Shevtsova, H. C. Kuhlmann and H. J. Rath, Convective instability mechanisms in thermocapillary liquid bridges, Phys. Fluids 7, 912-925 (1995). PDF Logo
  • H. C. Kuhlmann, Thermocapillary flows in finite size systems, Mathl. Comput. Modelling 20, 145-173 (1994). PDF Logo
  • H. C. Kuhlmann, Hydrodynamic instabilities in thermocapillary flows, Microgravity Sci. Technol. 7, 75-82 (1994). Abstract: PDF Logo, Full text not avaialble, but: [Link to journal]
  • H. C. Kuhlmann and H. J. Rath, On the interpretation of phase measurements of oscillatory thermocapillary convection in liquid bridges, Phys. Fluids A 5, 2117-2120 (1993). PDF Logo
  • H. C. Kuhlmann and H. J. Rath, Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges, J. Fluid Mech. 247, 247-274 (1993). PDF Logo
  • H. C. Kuhlmann and R. R. Adabala, Biorthogonal series method for Oseen type flows, Int. J. Engng. Sci. 31, 1243-1258 (1993). PDF Logo
  • H. C. Kuhlmann, Small amplitude thermocapillary flow and surface deformations in a liquid bridge, Phys. Fluids A 1, 672-677 (1989). PDF Logo
  • H. C. Kuhlmann, D. Roth und M. Lücke, Taylor vortex flow under harmonic modulation of the driving force, Phys. Rev. A 39, 745-762 (1989). PDF Logo
  • H. C. Kuhlmann, Model for Taylor-Couette flow, Phys. Rev. A 32, 1703-1707 (1985). PDF Logo